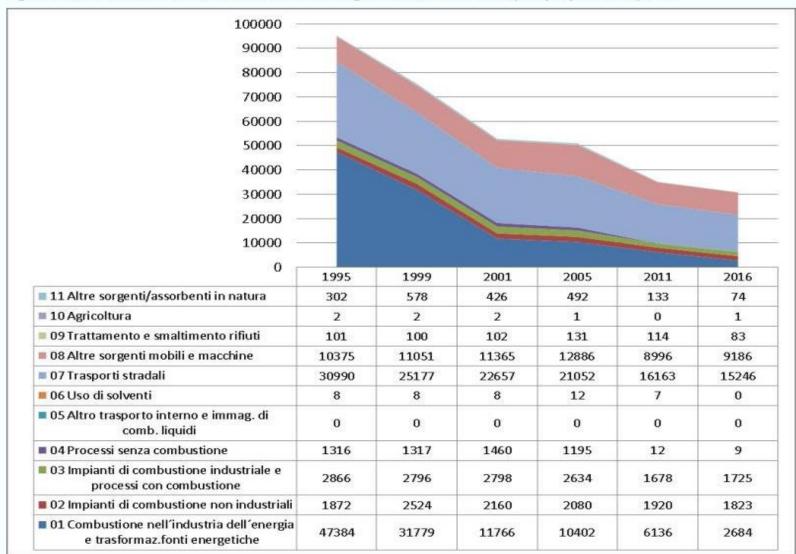


Porti Sostenibili - Strategie per la riduzione dell'inquinamento acustico e atmosferico nelle città

Ports Durables - Stratégies de réduction du bruit et de la pollution atmosphérique dans les villes

Sustainable Ports - Strategies for reducing noise and air pollution in urban areas

Studio degli impatti delle attività portuali sulla qualità dell'aria Monica Beggiato – ARPAL 22 giugno 2021



Fonds européen de développement régional Fondo Europeo di Sviluppo Regionale

Figura 1: Contributo dei macrosettori alle emissioni regionali di ossidi di azoto (NOx) espresse in t/anno

Porti Sostenibili - Strategie per la ridu

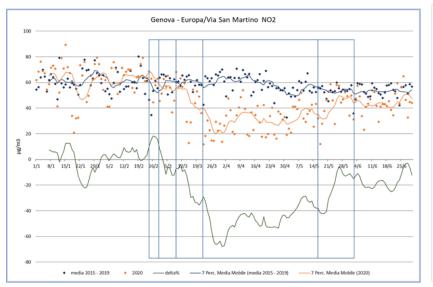
Ports durables - Stratégies de réduction du bruit et de la pollution atmosphérique dans les villes Sustainable ports - Strategies for reducing noise and air pollution in urban areas

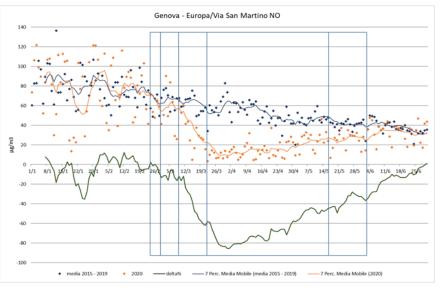
durante il lockdown 2020

Medie giornaliere degli NO_x

confronto gli andamenti delle medie giornaliere di monossido di azoto (NO) e di biossido di azoto (NO2) rilevati nel primo semestre del 2020 con gli andamenti medi rilevati nel quinquennio precedente (2015 ÷ 2019).

- 1. la media delle medie giornaliere nel periodo 2015 ÷ 2019 (punti blu),
- 2. la media mobile su 7 giorni delle precedenti (linea blu),
- 3. le medie giornaliere nel 2020 (punti arancio),
- 4. la media mobile su 7 giorni delle precedenti (linea arancio).

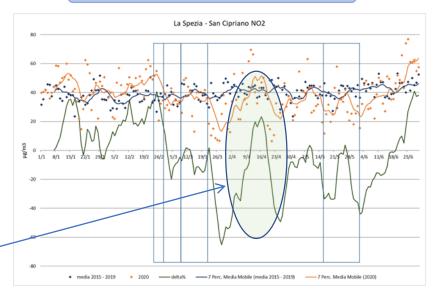

Fonds européen de développement régional Fondo Europeo di Sviluppo Regionale

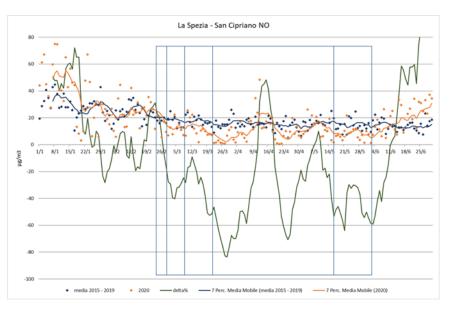


Medie giornaliere degli NO_x

Stazioni da traffico

		NO2 (μg/m3)				NO (μg/m3)			
		2020	2015 - 2019	delta	delta%	2020	2015 - 2019	delta	delta%
Genova - Buozzi	urbana traffico	36.40	56.32	-19.92	-35.37	18.57	45.91	-27.34	-59.55
Genova - Europa/Via San Martino	urbana traffico	33.44	58.72	-25.28	-43.05	20.06	53.18	-33.13	-62.29
Genova - Pastorino	urbana traffico	30.72	48.10	-17.38	-36.14	10.70	39.78	-29.09	-73.11
Savona - Ricci	urbana traffico	15.88	32.43	-16.55	-51.03	7.01	19.23	-12.21	-63.53
Vado L. SV - Aurelia	urbana traffico	13.29	26.63	-13.34	-50.08	4.08	11.75	-7.66	-65.25
La Spezia - Amendola	urbana traffico	13.17	33.04	-19.87	-60.15	4.37	15.42	-11.05	-71.69
La Spezia - Saint Bon	urbana traffico	15.42	30.02	-14.60	-48.63	3.61	11.09	-7.48	-67.43
Sanremo - Battisti	urbana traffico	5.41	19.15	-13.64	-63.69	1.14	3.86	-2.96	-63.09





Fonds européen de développement régional Fondo Europeo di Sviluppo Regionale

> Stazioni influenzate dalle emissioni portuali

Nel mese di APRILE che ha visto la presenza costante di navi la riduzione è stata dell'ordine del 10%

Medie giornaliere degli NO

		NO2 (μg/m3)				NO (μg/m3)				
		2020	2015 - 2019	delta	delta%	2020	2015 - 2019	delta	delta%	
Genova - Firenze	urbana fondo	18.64	33.56	-14.63	-43.83	4.93	10.08	-5.19	-51.77	
Savona - Varaldo	urbana fondo	11.85	14.32	-2.13	-12.84	2.48	4.93	-2.48	-46.11	
La Spezia - San Cipriano	urbana traffico	33.00	40.64	-6.92	-17.00	10.88	16.00	-4.81	-30.66	
La opezia dan cipilano	ar sand trainico	33.00	10.01	0.52	27.00	10.00	10.00		30.00	

AER NOSTRUM in sintesi

eu/web/aer-nostrum/

Il valore complessivo

2.180.996,55 €

La durata: 36 mesi

01.04.2020 - 31.03.2023

http://interreg-maritime.eu/web/aer-nostrum/

Le zone portuali rappresentano aree di rilevanza economica sottoposte a forti pressioni ambientali che rendono necessarie misure di tutela ambientale e sanitaria. La sfida condivisa è promuovere la riduzione delle emissioni inquinanti derivanti dalle attività portuali ed in particolare, dalle navi.

L'obiettivo generale è contribuire a preservare o migliorare la qualità dell'aria nelle aree prospicenti i porti dell'area di progetto favorendo al contempo la crescita sostenibile delle attività portuali, nel rispetto della normativa vigente e delle politiche ambientali europee.

Il progetto realizzerà un osservatorio transfrontaliero per il monitoraggio della qualità dell'aria nei porti attraverso un approccio innovativo basato sul confronto fra gli strumenti impiegati, sull'analisi e l'implementazione dei modelli previsionali, sull'armonizzazione delle metodologie di indagine e sulla condivisione dei dati. I possibili percorsi di mitigazione delle emissioni saranno definiti anche tramite coinvolgimento degli stakeholder.

Le autorità portuali, le compagnie di navigazione, le capitanerie di porto e i decisori politici beneficeranno di uno strumento di supporto decisionale innovativo, specifico per le aree portuali per attuare azioni preventive di tutela ambientale in linea con le normative vigenti e in un'ottica di crescita sostenibile.

Il miglioramento delle condizioni ambientali avrà effetti positivi sulla salute e sulla qualità di vita delle popolazioni residenti e sullo sviluppo delle attività economiche legate alle risorse naturali marine e al turismo.

Le component: T1 monitoraggio

- Confronto tra i partner sulla diversa strumentazione da utilizzare nelle campagne di monitoraggio ad alta risoluzione spaziale e temporale realizzate anche tramite «smart sensor»
- Definizione delle campagne di monitoraggio da realizzare nei siti studio, acquisizione strumentazione
- Realizzazione delle campagne nel periodo estate 2021 primavera 2022
- Interconfronto tra i dati «smart» e la strumentazione ufficiale
- Analisi dei dati raccolti e valutazione del «source apportionment»
- Realizzazione di una piattaforma per la visualizzazione dei dati

Le component: T2 modellistica

- Confronto tra le caratteristiche ed i campi di applicazione dei diversi modelli (lagrangiani/euleriani) in uso presso i partner e definizione delle nuove funzionalità da implementare quali il miglioramento della risoluzione spaziale
- Benchmark delle metodologie di calcolo relative alle emissioni in atmosfera in ambito marittimo – portuale e conseguente definizione della metodologia da utilizzare
- Elaborazione di un database degli input emissivi ad elevata risoluzione a partire dai dati dell'inventario regionale integrato con dati reperiti ad hoc
- Validazione dei risultati ottenuti dall'applicazione dei modelli con i dati acquisiti nella component T1

Le component: T3 scenari

- Ricognizione dei progetti di sviluppo previsti per i territori
- Individuazione delle misure di mitigazione anche attraverso tavoli di governance con istituzioni ed operatori del settore
- Individuazione delle principali tecnologie attualmente disponibili e di quelle che potrebbero esserlo a medio termine per ridurre le emissioni di gas inquinanti e di CO₂
- Per ciascuna tecnologia saranno valutate le dimensioni economiche, i possibili vantaggi e svantaggi e verranno fornite indicazioni sintetiche per valutare l'efficacia degli investimenti a livello economico ed ambientale

Porto di Genova

dominio 3x3 km² (ricadono i punti di misura fissi e degli smart sampler):

- 4 smart CIMA NO₂ & PM10
- 5 smart PM10 (filtro & realtime)
- 2 tradizionali RQA

NO_x, SO₂, CO PM2.5, PM10 Lab mobile RQA Speciazione PM DV, VV, TC, PA, HR - NO_x - PM1, PM2.5, PM10 Speciazione PM? E8.915° E8:905° N44.406° N44.3988° Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Stazione fissa RQA

Porti Sostenibili - Strategie per la riduzione dell'inquinamento acust Ports durables - Stratégies de réduction du bruit et de la pollution a Sustainable ports - Strategies for reducing noise and air pollution in

PERIODI:

estate 2021,

inverno-primavera 2022

STRUMENTAZIONE:

- Smart sensor in specifici siti all'interno del dominio:
- parametri misurati (NO₂, PM10)
- Laboratorio mobile con strumentazione 'tradizionale' presso San Teodoro:
 - speciazione chimica PM (DIFI-UNIGE): metalli, anioni, cationi, levoglucosano, OC, EC
- Postazione fissa RQA con strumentazione 'tradizionale' presso Corso Firenze:
 - speciazione chimica PM (DIFI-UNIGE): metalli, anioni, cationi, levoglucosano, OC, EC

IN VIA DI DEFINIZIONE:

• Campagna di inter-confronto tra smart sensor e strumentazione tradizionale:

PM10 – campionatore gravimetrico PM10- abbinato sensore ottico (dato al minuto/ora) real-time:

Disponibilità siti-alimentazione elettrica sopralluoghi per individuazione di dettaglio dei siti

Prodotti attesi

- Costituzione data set per il source apportionment tramite modello a recettore (PMF-EPA5);
- Report di sintesi dei risultati delle campagne di monitoraggio: adeguatezza della strumentazione a minor costo utilizzata, risultati delle campagne: analisi qualitativa e quantitativa dei dati/source apportionment;
- Piattaforma per la visualizzazione dei dati di qualità dell'aria, contenente sia i dati delle reti che quelli delle campagne di monitoraggio;
- Possibile confronto source apportionment: modello recettore/modello chimica e trasporto (CTM)

GRAZIE PER L'ATTENZIONE