

Fondo Europeo di Sviluppo Regionale

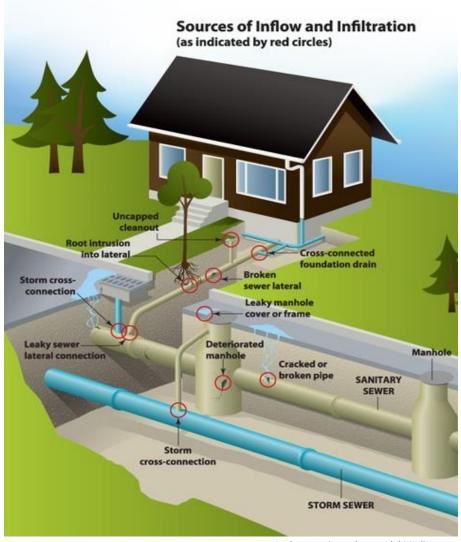
Livorno, 28 giugno 2018

SMART-DEPUR fognature "smart" per l'ottimizzazione dei sistemi di drenaggio e depurazione dei reflui urbani

Renato Iannelli

Università di Pisa DESTEC (Dipartimento di Ingegneria dell'Energia, dei Sistemi, del Territorio e delle Costruzioni)

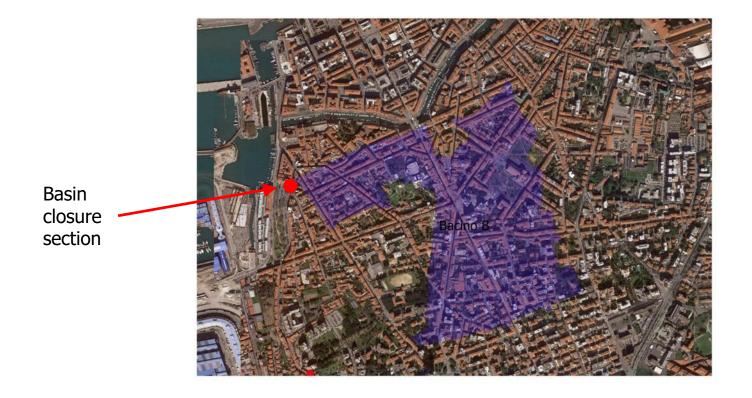
Introduction 1&I (Infiltration/Inflow)



- □ **Inflow** is stormwater (surface runoff) that enters sanitary sewers at points of direct connection to the systems
- □ **Inflow sources**: footing/foundation drains, roof drains or leaders, downspouts, drains from window wells, outdoor basement stairwells, drains from driveways, groundwater/basement sump pumps, and illegal/wrong connections to the sanitary sewer system

□ **Infiltration** is groundwater that enters sewers through pipe cracks and/or leaks

Inflow and infiltration reduce the ability of sanitary sewers and treatment facilities to transport and treat domestic and industrial wastewater

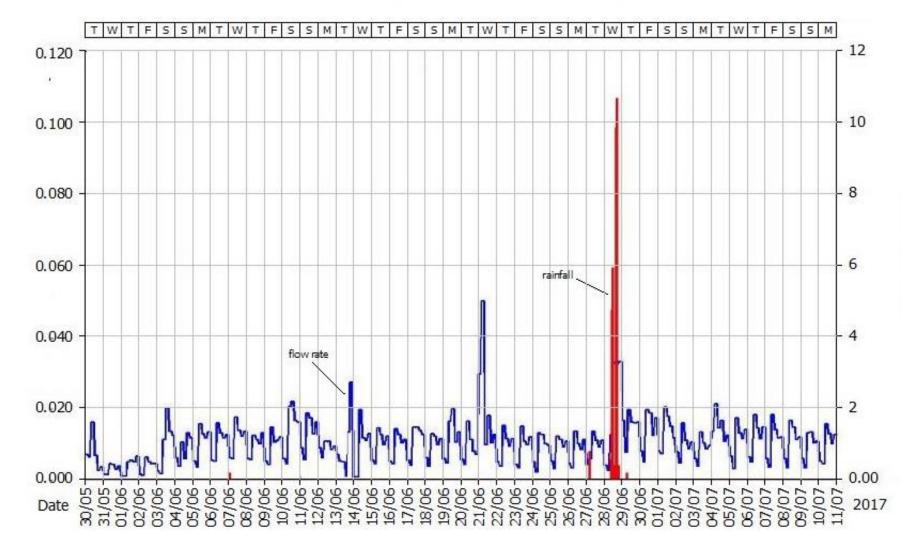

Higher costs. e.g., higher amount of reagents, more electrical energy required, environmental impacts, and workforce used to face the emergencies

La Cooperazione al cuore del Mediterraneo La Coopération au coeur de la Méditerranée

Case study Livorno sewer system

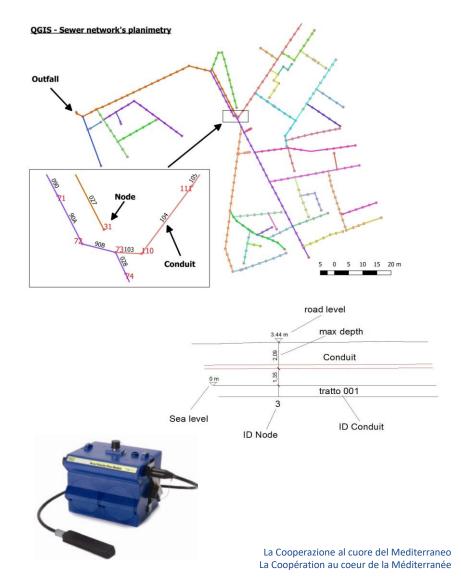
- □ We studied a portion of the sanitary sewer system, located in the city center of Livorno
- □ The basin has an area of about **0.6 km²**. It is mainly a residential area, with few commercial activities
- The basin closure section is located at the intersection of Via Carlo Bini and Via delle Navi.

Example – 1


W S S Т W Т F S SM F S S M Т Т F S M Т W F S М W Т 0.040 4.00 0.035 3.5 0.030 height of rainfall (mm) 3.00 flow rate Flow rate (m³/s) 0.025 2.50 0.020 2.00 0.015 1.50 0.010 1.00 0.005 0.50 rainfall 0.000 0.00 31/01-01/02-02/02-20/07 02/07 02/07 02/07 02/07 01 /01 01 01 10, 101 01 10, 30/01 10, 01 01 01 01 01 01 01 01/ 0/01 01 Date 9 8 4 5 9 2 6 8 6 0 m N

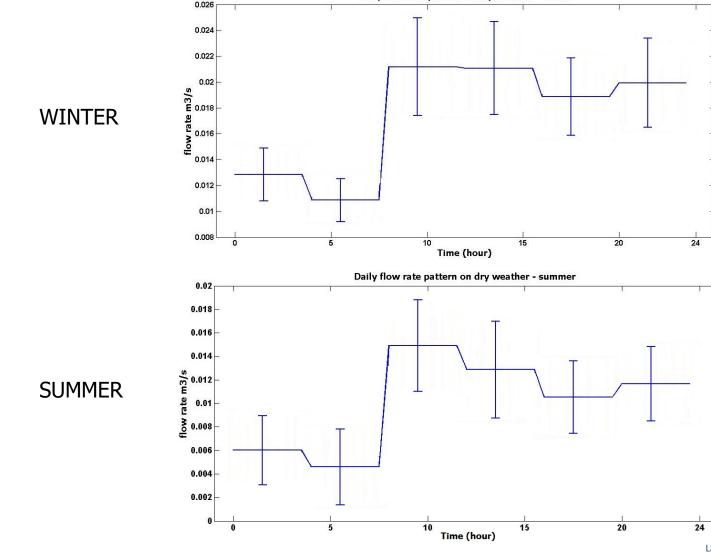
AVERAGE FLOW RATE ON 4 HOURS TIME FRAME

AVERAGE FLOW RATE ON 4 HOURS TIME FRAME



Flow rate (m³/s)

Our approach to the I&I identification


- We developed a SWMM model of the analyzed network in order to simulate the real behavior of the basin in the presence of rainfall.
- > The adopted modelling approach required:
 - Definition of the network geometry;
 - Collection of flow data measured at the closing section by a combined level-speed flow meter;
 - Collection of rainfall data;
 - Analysis and processing of collected data;
 - Checking the hydraulic network in dry weather;
 - Modeling by EPA SWMM software of the network behavior in case of rain;
 - Determination of critical rain and associated return time;
 - Assessments and considerations, based on the results obtained, about the extent of the parasitic waters (in terms of quantity and location).

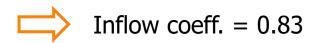
Daily mean dry-weather flow rate patterns

 \triangleright

Daily flow rate pattern on dry weather - winter

La Cooperazione al cuore del Mediterraneo La Coopération au coeur de la Méditerranée

Case study


Data from ASA database of water main users:

- Resident population: 10,500 units
- □ Total water consumption: 485,639 m³/y
- Average water supply per capita: **127 L/(unit·d)**

Data from flow measurements carried out at the closing section:

- Mean dry weather flowrate = 0.013 m³/s
- Maximum dry weather flowrate = 0.037 m³/s
- Annual volume discharged (total) = 409,968 m³/y
- Annual volume per capita = 39.04 m³/(unit·y)
- Daily volume per capita = 107 L/(unit·d)

Uniform flow NETWORK verification (Dry weather)

The dry-weather capacity of each individual pipe of the network was verified by comparing its estimated peak flow (Q_n) with its maximum hydraulic capacity (Q_{max})

Estimated peak flow (**Q**_n):

$$Q_n = \alpha \psi \frac{Nq}{86400}$$

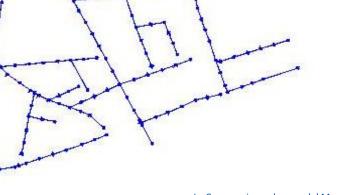
where:

 Q_n = conduit peak flow (L/s)

N = population units served by the conduit

q = water supply per capita (L·unit⁻¹·d⁻¹)

 α = peak flow coefficient


 Ψ = Inflow coefficient

The maximum hydraulic capacity (\mathbf{Q}_{max}) of each conduit was estimated in uniform flow conditions using the Gauckler-Strickler equation at a maximum filling ratio of 83%

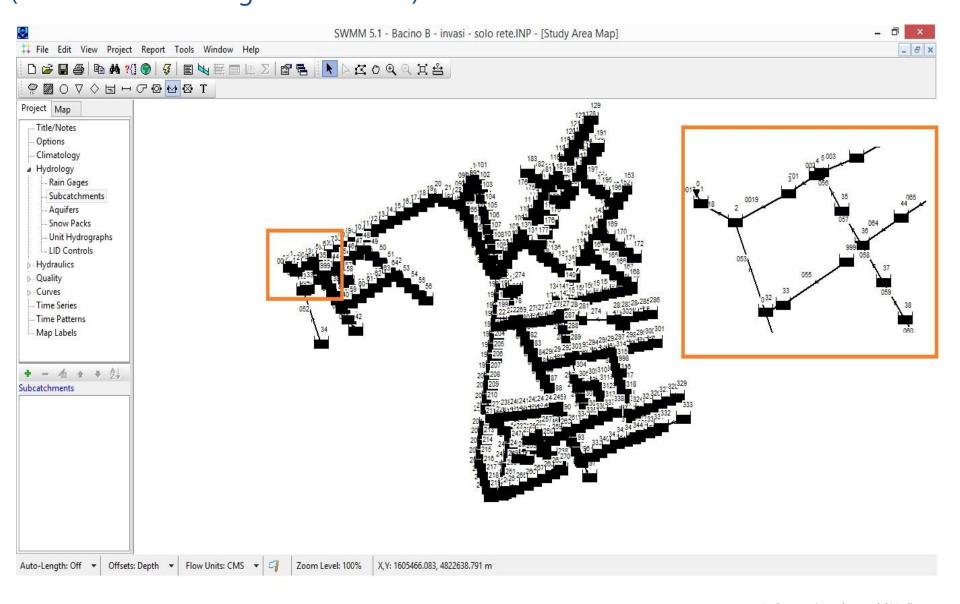
Uniform flow NETWORK A Little Control of the second second

Acausto of sever network in dry time consistent											
Gandalt	Lensins (m)	2.558	Watar CATHAGARAA (1540)	Cornerption Sectorities or total	Cecieso nar constuti	Standeler Stradder's Bassbreten (n.* 1/200	Distant (m)	Hartmon Clan 169 (dn2h)		rete (droßin)	
081	51.11	0,0045	412/	18481			62	10,029	0.849		Verland
067	24.53	3,3042	013		17,50		02	19,7225	0,0007		VERICER
104	\$7.22	1.0164	1.79		1100		1.2	10-005	01671		VERDERAT
004	52.26	0,0047	1752		23,52		0,2	3,3143			VERGED
911	28.83	-0.0017	1022		22.10		0,2	- 11, 2009			ACT VERIEIET
ULS.	27.50	3,3014	6/0		4,41	68.67	6,2	30,7423	0.0558		RC VERIES
YARS -	20,20	0.0015	735	0.11010	10.57	66,67	62	10,9644	0,0452	33,2004	NOT VERIFIED
067	30.35	3,3015	1115		24,13	68.87	62	31,5053	0.0342		ROT VERHIED
069	26.70	0.0017	/09	0.05367	4,66	66,67	- 62	11,821	0,0004	30 (200)	NOT VERIFICE
100 1	25.52	7.3015	454		11.56		-0.22	0,5355	0,047+		「おり」など優先の
090	24.45	3,0010	623	0.13058	72,91	66.92	62	11,4067	0,0950	30,0732	NOT VERSION
1005	19.14	1.4/11		11380	4,00		102	11,2682	p.t.c.t.	30363	NOT VEHICLE
903	12.12	1,0051	3	200603	1,30		0,2	27,9824			ACT VERIED
1098	4.27	0.0065		0.00000	0.00	: 0002	6,2	20.1457	0,000	20.8165	VERIGED
022	41.58	3,3050	34/0		33,54		0.2	26,2615	0250		VERIOD.
020	27.61	1,0970		0.00000	0.00	06.62	6/2	20.1025	6,0000	12,7789	VERIGED
USE	32.25	1,3,63	110.0		25,30		0.2	23,5272			VE(SHED)
000	24 27	0,0074	2:27	2.47075	50.2T	10.57	02	20,0000	0,1964	11,4477	VERIFIED
083	32.97	1,2,62	1112		24,34		0.2	23,865			VEHICLE
024	54.43	0.0042	2127	0.00524	55.72	66.62	0.2	19 1011	0.2470	2,0015	MCRACE.

Outfall

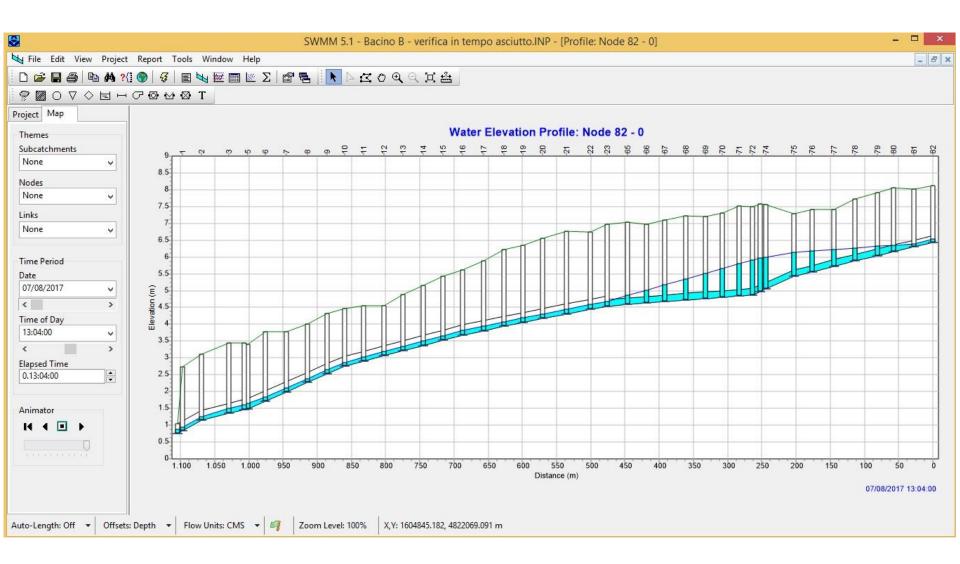
Uniform flow NETWORK validation: *41* Interreg Results

Analysis of sewer network in dry time condition

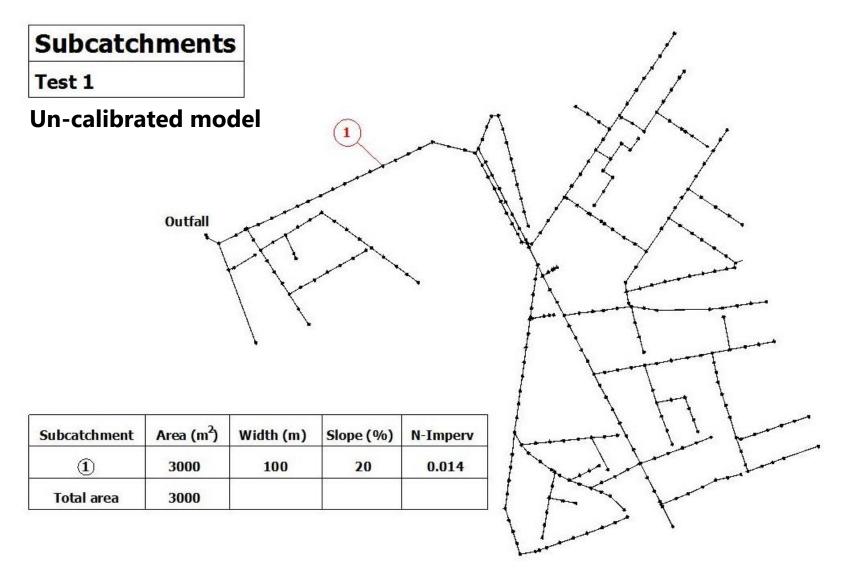

Analysis of	sewer network	in dry time	condition

						Cauaklar					
Conduit	Lenght (m)	Slope	Water consumption (m3)	Consumption percentage on total	Person per conduit	Gauckler Strickler's Raughness (m^1/3/s)	Diameter (m)	Maximum <u>Flow</u> rate (dm3/s)	Partial Flow rate (dm3/s)	<u>Total Flow</u> rate (dm3/s)	
081	31,11	0,0048	4127	0,84981	89,23	66,67	0,2	19,7276	0,3486	0,6248	VERIFIED
082	31,08	0,0048	813	0,16741	17,58	66,67	0,2	19,7375	0,0687	0,2763	VERIFIED
083	31,22	0,0048	676	0,13920	14,62	66,67	0,2	19,6935	0,0571	0,2076	VERIFIED
084	32,26	0,0047	1782	0,36694	38,53	66,67	0,2	19,3740	0,1505	0,1505	VERIFIED
84a	29,99	0,0017	1072	0,22074	23,18	66,67	0,2	11,5999	0,0905	30,4165	NOT VERIFIED
085	27,98	0,0014	670	0,13796	14,49	66,67	0,2	10,7420	0,0566	30,3260	NOT VERIFIED
086	26,76	0,0015	535	0,11016	11,57	66,67	0,2	10,9844	0,0452	30,2694	NOT VERIFIED
087	30,38	0,0016	1115	0,22959	24,11	66,67	0,2	11,5250	0,0942	30,2242	NOT VERIFIED
088	28,70	0,0017	309	0,06363	6,68	66,67		11,8581	0,0261	30,1300	NOT VERIFIED
089	25,02	0,0012	494	0,10172	2			9,8386	0,0417	30,1039	NOT VERIFIED
090	24,46	0,0016	673	0,13858	14,55	66,67		11,4887	0,0568	30,0622	NOT VERIFIED
90a	19,17	0,0016	0	0,00000	0,00	66,67		11,2392	0,0000	30,0054	NOT VERIFIED
90b	12,12	0,0091	0	0,00000	0,00	66,67	0,2	27,0664	0,0000	30,0054	NOT VERIFIED
028	8,27	0,0085	0	0,00000	0,00	66,67	0,2	26,1417	0,0000	20,3195	VERIFIED
029	41,09	0,0090	3170	0,65275	68,54	66,67	0,2	26,9615	0,2677		VERIFIED
030	25,81	0,0050	0	0,00000	0,00	66,67	0,2	20,1635	0,0000	12,5789	VERIFIED
031	32,26	0,0053	1198	0,24669	25,90	66,67	0,2	20,6232	0,1012	12,0489	VERIFIED
032	31,07	0,0051	2325	0,47875	50,27	66,67	0,2	20,3883	0,1964	11,9477	VERIFIED
033	31,97	0,0050	1112	0,00229	24,04	66,67	0,2	20,0988	0,0939	11,7514	VERIFIED
034	24,48	0,0049	2577	0,00531	55,72	66,67	0,2	19,8910	0,2176	9,4015	VERIFIED

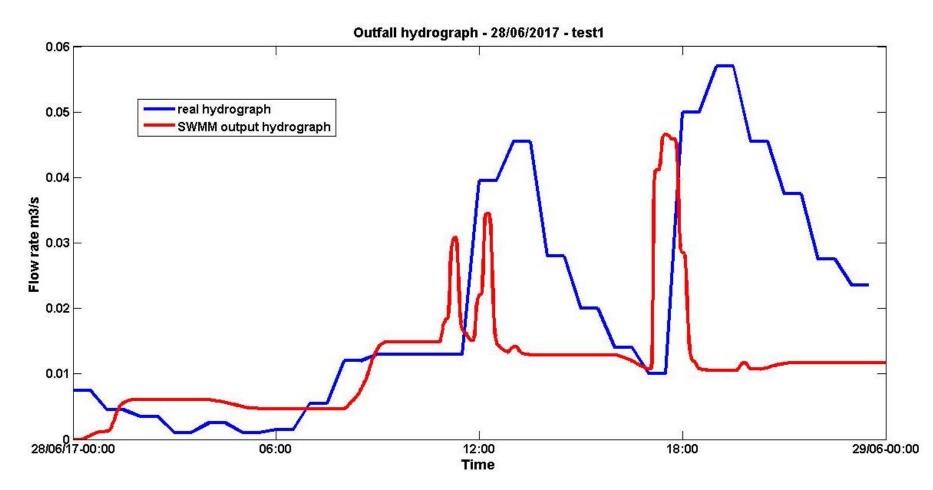
U.S. E.P.A. SWMM 5.1 (Storm Water Management Model)

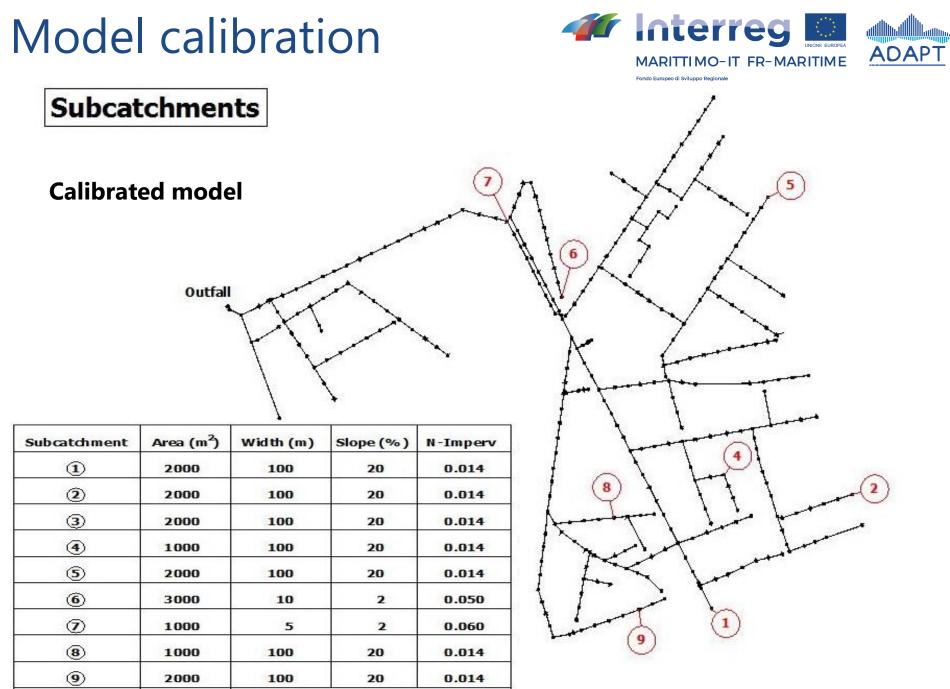


Fondo Europeo di Sviluppo Regionale


Model results

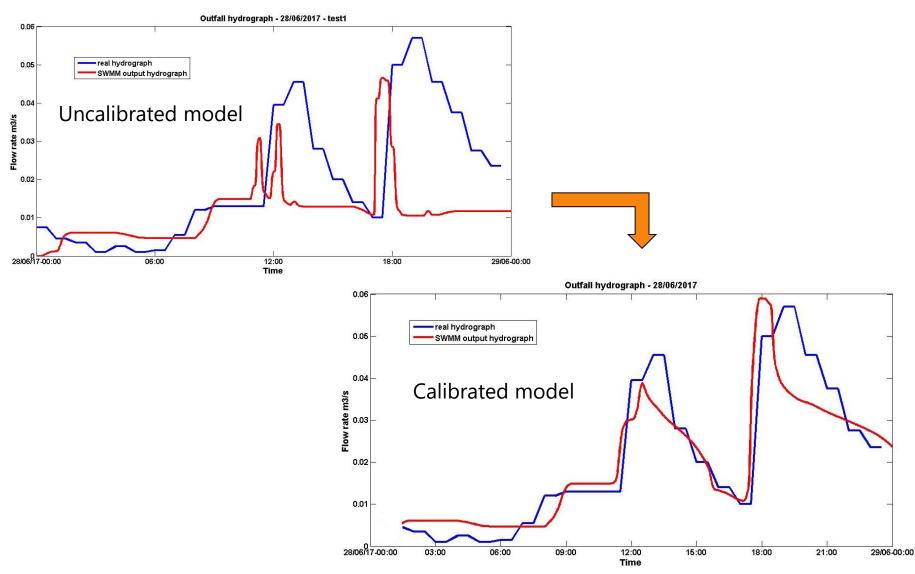
Modelling of infiltration/Inflow





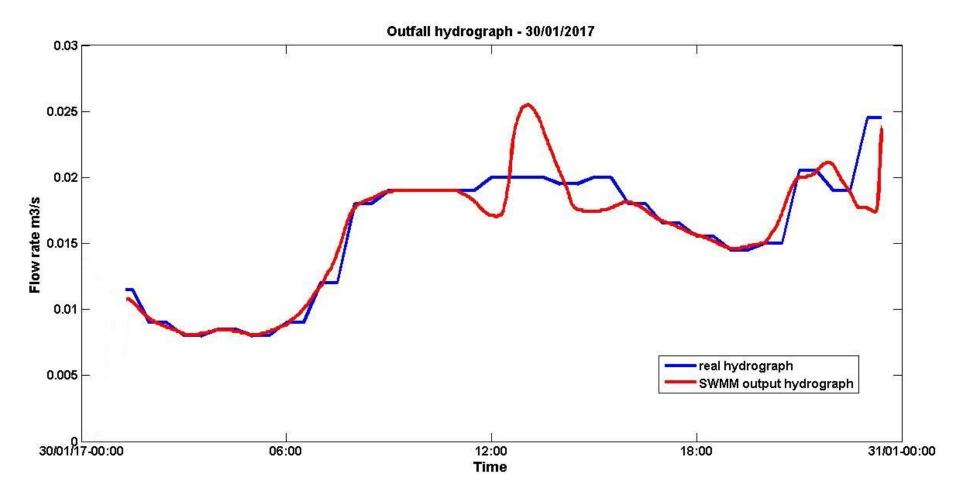
Modelling of infiltration/Inflow

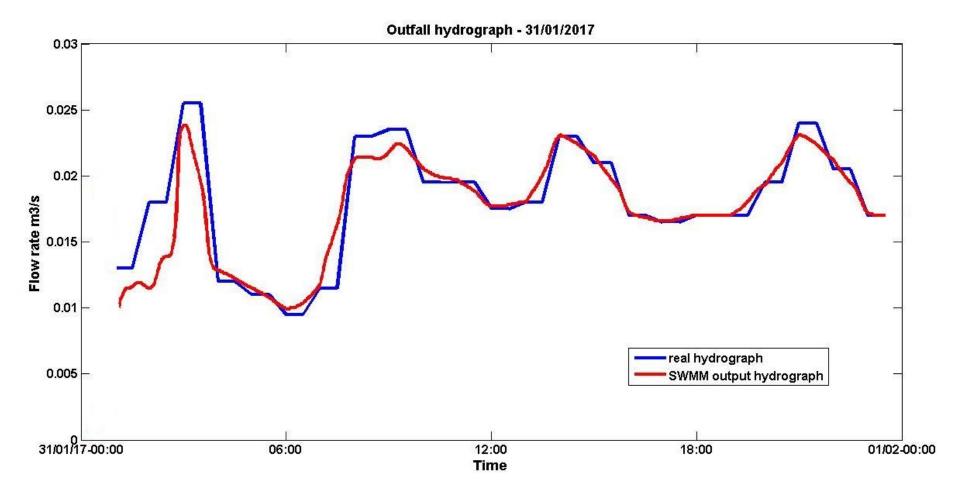
Un-calibrated model



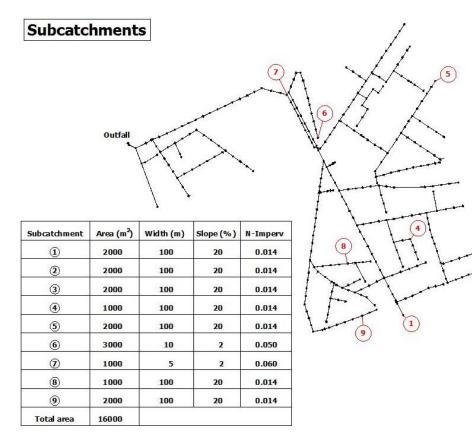
Total area

16000

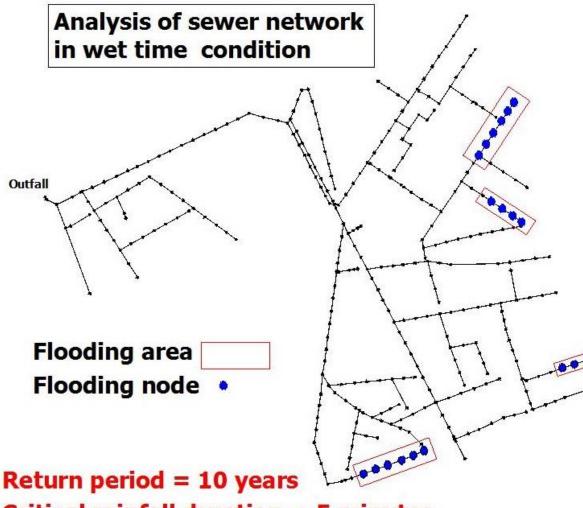

Model calibration: Results


Model Validation – 1

Model Validation – 2



Discussion


- Infiltration is originated from a ~16000 m² surface, corresponding to 2.8% of the total surface of the basin
- The model calibration allowed us to find the **spatial distribution** of those surfaces / inlet points contributing to inflow
- The model validation was successful. Further refinement is possible by improving the quality of the input data (e.g., field surveys)

the different parameters used (width, slope and roughness) indicate different inflow/infiltration mechanisms. While sub-basins 1,2,3,4,4,5,8,9 may represent direct drainage connections of impermeable surfaces to the sewer (e.g., roofs), sub-basins 6 and 7 may be due to slower rainwater inlet into the network (e.g. broken pipelines or wells).

Critical rainfall

- In critical conditions there is an increase in flow rate of 20 L/s, equal to the average flow rate multiplied by 1.54
- The drainage areas are mostly located in the network sections that are far from the closing section

Critical rainfall duration = 5 minutes Critical rainfall intensity = 183.41 mm/h

Water quality monitoring and modelling

Aims:

- Confirming the infiltration/inflow points identified with the flow model;
- Improving the management practices of wastewater treatments plants to reach water quality standards.

The adopted approach:

- Definition of the monitoring points in the network;
- Measurement of flow and *chemical-physical* parameters data;
- Collection of wastewater samples;
- Analysis and processing of collected data;
- Coupled modeling by SWMM of flow and transport process in dry weather and rain conditions.

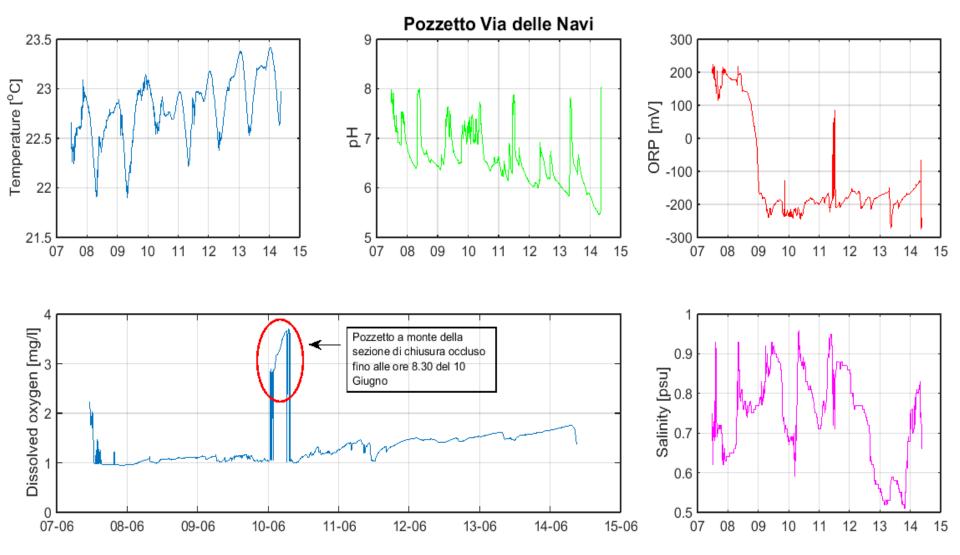
Water quality monitoring *Marittimo-it FR-MARITIME*

> Definition of the monitoring points based on conduits ranking

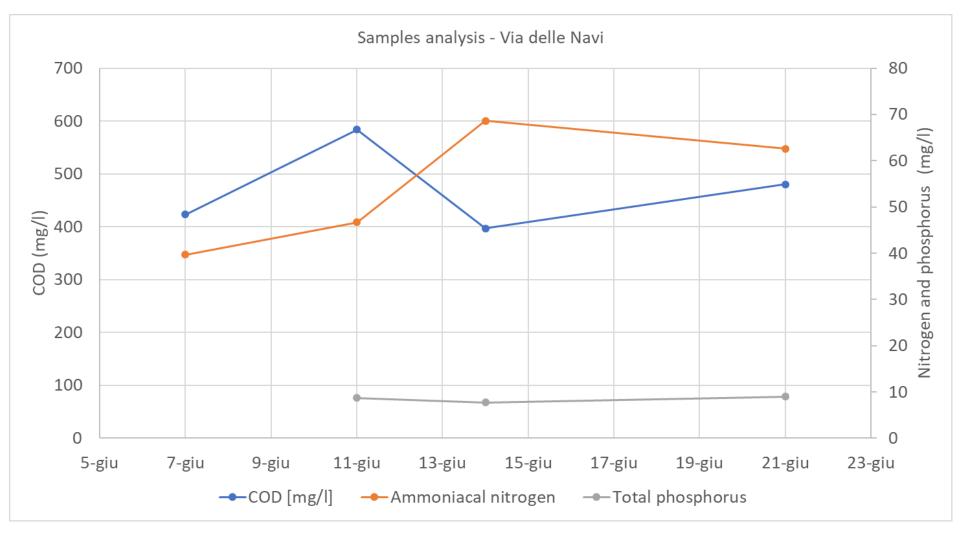
- 3-level ranking of conduits;
- 4 monitoring points (including the closing section)

Fondo Europeo di Sviluppo Regionale

Water quality monitoring


Flow meter and multi-parametric probes installation in monitoring points
Wastewater samples collection in in monitoring points

Water quality monitoring


First results

Water quality monitoring

First results

Water quality modelling

Conclusions

- We developed an approach, based on modelling, to identify and locate the possible infiltration/inflow points in the network
- We applied the model to a portion of the sanitary sewer network of Livorno
- We calibrated the model with flow measurements at the closing section of the studied basin
- The model was successfully validated

Future steps

- Extend the study area, possibly to the entire sewer network
- Develop algorithms to automatically identify the most critical sections of the network
- Define network maintenance and adaptation, and suggesting wastewater treatment management rules
- Define a priority scale that takes into account the costs and benefits of the possible interventions

Fondo Europeo di Sviluppo Regionale

Grazie per l'attenzione Merci pour l'attention

ALGHERO

SASSARI

ORISTANO

LA SPEZIA

